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We thank the reviewers for taking the time to review our supplementary material. We first present the1

implementation details of our method in Sec. A. We then detail the construction of our simulated2

dataset and analyze the effect of degradation on COLMAP initialization in Sec. B. In Sec. C, we3

conduct further ablation studies and provide an in-depth analysis of our findings. Section D provides4

additional qualitative visualizations to better illustrate the performance of our method. Finally, we5

consider our work’s broader implications and potential societal impact in Sec. E.6

A Implementation Detail7

This section outlines our implementation details, including the training settings (i.e., Sec. A.1),8

supplementary information of the pseudo-depth Gaussian complementation (i.e., Sec. A.2), and the9

depth gradient computation under scattering media (i.e., Sec. A.3).10

A.1 Training Settings11

We train our model using a volumetric extension of 3D Gaussian Splatting. For reconstruction tasks,12

we train for 15,000 steps, while for restoration tasks, which require higher accuracy, we extend13

training to 30,000 steps. Following the progressive training strategy introduced in 3DGS [1], training14

begins at 1/4 resolution and gradually doubles every 3,000 steps to increase spatial detail. To prevent15

unstable updates in the early training phase, we apply a 500-step warm-up before the Gaussian16

refinement. After warm-up, Gaussian refinement (including densification and culling) is performed17

every 100 steps. Densification is triggered for a Gaussian primitive when its gradient norm exceeds18

0.0008. In this case, if the Gaussian scale is below 0.001, it is copied to expand coverage; otherwise,19

it is split into two samples to preserve fine-grained structure. In parallel, culling is applied at each20

refinement step to remove Gaussians with opacity below 0.5. To prevent opacity saturation and21

encourage stable convergence, all opacities are reset to 0.5 every five refinement steps. Together,22

these refinement steps first densify to improve coverage, then cull to remove floaters, ensuring a23

compact and effective representation.24

We employ the Depth Anything Model [2, 3] as an external image depth estimator to generate the25

pseudo-depth maps. We use the newest version, V2, and the largest model variant, ViT-L, which is26

pretrained on diverse datasets and applied in inference mode without further fine-tuning. Following27

the official implementation, each image is first resized to a fixed resolution (518 × 518) before28

passing through the model. This resizing ensures compatibility with the model’s ViT backbone,29

which performs best under fixed input sizes due to its patch-based architecture. The predicted depth30

Table 7: Optimizer and scheduler configurations for each parameter group.

Parameter Group Initial LR Final LR Notes

Means 1.6e-4 5e-5 Position updates
DC Features 2.5e-3 2.5e-4 Direct color channels
Rest Features 1.25e-4 1.25e-5 Non-DC channels
Opacities 5.0e-2 5.0e-2 No decay
Scales 5.0e-3 5.0e-3 No decay
Quaternions 1.0e-3 1.0e-3 Rotation parameters
Medium DC Features 2.5e-3 2.5e-4 For volumetric medium
Medium Rest Features 1.25e-4 1.25e-5 For anisotropic scattering



Algorithm 1 Pseudo-Depth Gaussian Complementation
Input:

The set of the input cameras V , and corresponded images C;
The COLMAP initialized Gaussian primitives, G;

Output:
The final Gaussian primitives, G′;

1: G′ = ∅
2: for V ∈ V , C ∈ C do
3: D̂, T obj

N+1← render from G for V using Eqn. 8 of the main manuscript.
4: Ωp ← {(x, y)|T obj

N+1(x, y) ≥ τw}
5: get D̃ by Depth Anything Model with image input C
6: Ωn ← {(x, y)|D̃(x, y) < τnearmax(D̃)}
7: get D̃′ from D̃ using Eqn. 9 of the main manuscript.
8: for (x, y) ∈ Ωn ∪ Ωp do
9: get µ,A using Eqn. 14

10: get Σ using Eqn. 15
11: σ ← 0.1
12: G ← {µ,Σ, A, σ}
13: G′ ← G′ ∪ {G}
14: end for
15: end for
16: G′ ← G ∪G′

17: return G′

map is then upsampled via bilinear interpolation to match the original image resolution and stored as31

a dense pseudo-depth prior for further use in our pipeline.32

Each parameter group is optimized using the Adam optimizer with ϵ = 10−15 and exponential decay33

scheduling. For instance, the 3D means are trained with an initial learning rate of 1.6× 10−4, which34

decays to 5 × 10−5 over time, while opacities are optimized using a fixed learning rate of 0.05.35

Additional learning rates and scheduler configurations details are provided in Tab. 7.36

A.2 More Detail of the Pseudo-Depth Gaussian Complementation37

In this section, we detail the procedure of our Pseudo-Depth Gaussian Complementation (PDGC), as38

summarized in Alg. 1.39

Based on the pixel regions selected by Ωn and Ωp (as defined in Sec. 4.2 of the main manuscript),40

we determine where new Gaussians should be inserted. For each selected pixel (x, y), we project it41

into 3D space as a Gaussian using its calibrated pseudo-depth D̃′(x, y). The 3D mean position µ and42

spherical harmonics–encoded color feature A are computed as:43

µ = WT ·

D̃′(x, y) · x
D̃′(x, y) · y
D̃′(x, y)

+

[
xc

yc
zc

]
, A = RGB2SH(C(x, y)), where (x, y) ∈ Ωn ∩ Ωp, (14)

here, W is the intrinsic matrix, and [xc, yc, zc]
T is the camera position. The function RGB2SH maps44

RGB values to 0th-order spherical harmonics coefficients for a compact color representation.45

To represent the shape and orientation of each Gaussian, we define its covariance matrix Σ via46

isotropic scaling S and a random rotation R:47

Σ = RSSTRT , S = diag(s, s, s), s =
D̃′(x, y) · (fx + fy)

h+ w
, (15)

where diag(s, s, s) constructs a diagonal matrix S that uniformly scales the Gaussian along all three48

spatial axes, resulting in an isotropic shape. The scalar s adapts the Gaussian size to the scene depth,49

while considering focal lengths (fx, fy) and image dimensions (h,w). The rotation matrix R is50

randomly initialized to promote diversity in orientation and mitigate optimization bias.51
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A.3 Backward Pass52

Unlike standard 3DGS, where the depth zi mainly affects the rendered depth D̂, in our medium-aware53

formulation, zi also influences the final rendered color Ĉ through scattering and attenuation. The loss54

L gradient concerning zi becomes:55

∂L
∂zi

=
∂L
∂D̂

· ∂D̂
∂zi

+
∂L
∂Ĉ

· ∂Ĉ
∂zi

. (16)

The first term corresponds to the direct contribution of zi to the depth rendering, which follows the56

standard 3DGS formulation:57

∂D̂

∂zi
= αiT

obj
i . (17)

The second term accounts for the influence of zi on color rendering, which stems from the medium-58

aware compositing process:59

Ĉ =

N∑
i

ciαiT
obj
i e−σattzi +

N∑
i

cmedT obj
i

(
e−σbszi−1 − e−σbszi

)
+ cmedT obj

N+1e
−σbszN . (18)

Thus, zi appears in the following terms of the color computation:60

• Ĉobj
i = ciαiT

obj
i e−σattzi , where zi affects attenuation of the object.61

• Ĉmed
i = cmedT obj

i (e−σbszi−1 − e−σbszi), where zi appears in the second exponential term.62

• Ĉmed
i+1 = cmedT obj

i+1(e
−σbszi − e−σbszi+1), where zi appears in the first exponential term.63

Combining these, we get:64

∂Ĉ

∂zi
= −σattciαiT

obj
i e−σattzi + σbscmede−σbszi

(
T obj
i − T obj

i+1

)
, (19)

where, the difference in transmittance simplifies as T obj
i − T obj

i+1 = T obj
i − (1− αi)T

obj
i = αiT

obj
i .65

Then, we substitute it back into the gradient of the loss:66

∂L
∂zi

=
∂L
∂D̂

· αiT
obj
i +

∂L
∂Ĉ

(σbse−σbszicmed − σatte−σattzicobj) · αiT
obj
i , (20)

This formulation captures depth’s dual role in geometry and appearance, enabling more informative67

gradient flow in scattering environments.68

B More Details of Our Simulated Dataset69

In this section, we present additional details about our simulated dataset. We first describe the dataset70

construction process (i.e., Sec. B.1), including medium configurations and rendering settings. We then71

analyze the impact of different degradation levels on COLMAP-based initialization (i.e., Sec. B.2).72

B.1 Dataset Construction73

As shown in Fig. 8, we simulate scattering medium using Blender’ Principled Volume shader,74

rendered with the Cycles engine to achieve high-fidelity light transport. A vertical density gradient75

is introduced along the Z-axis by combining the Texture Coordinate, Mapping, and Separate76

XYZ nodes, followed by a ColorRamp node to control the falloff. For fog, we adopt a white absorption77

color and low anisotropy (0.001) to simulate uniform scattering. For water, we use a bluish absorption78

tint and increased anisotropy to better approximate underwater light propagation with enhanced79

forward scattering. Three degradation levels (easy, medium, and hard) are realized by scaling the base80

density using adjustable Multipliers (e.g., 0.005, 0.01, 0.02). All images in our dataset are rendered81

with linear color management to allow for accurate exposure adjustments during post-processing.82
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Figure 8: Blender interface used for dataset rendering.

Figure 9: Sampled images from our simulated dataset.

Specifically, we set the view transform to Standard and turn off gamma correction (gamma = 1.0). We83

do not use user-defined curve adjustments, ensuring no tone mapping or nonlinear operations alter the84

image. This enables consistent and physically meaningful exposure control during post-processing.85

The dataset comprises two distinct scenes (Beach and Street), as illustrated in the ground truth (GT)86

visualizations shown in Fig. 9, supporting robust and comprehensive benchmarking. Additional87

details, including exact shader setups and scene configurations, are provided in the supplementary88

Blender source files.89

Water GT Fog
hard←−−−−−−−−−−−−−−−−−−− easy easy −−−−−−−−−−−−−−−−−−−→ hard

2988 5569 6043 8371 6454 5569 3707

2805 4326 7239 9931 7819 6072 3406

Figure 10: Sparse point clouds obtained by COLMAP under varying degradation conditions. The
numbers below each image indicate the number of 3D points. For both the Beach (top) and Street
(bottom) scenes, we show the impact of different levels of fog and water degradation (from easy to
hard) compared to the clean ground truth. Severe degradation results in significantly sparser points,
illustrating the challenge of reliable initialization of 3DGS.
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Water GT Fog
hard←−−−−−−−−−−−−−−−−−−− easy easy −−−−−−−−−−−−−−−−−−−→ hard

0.999 0.999 1.000 1.000 1.000 1.000 0.999

0.994 0.996 0.997 1.000 0.998 0.996 0.995

Figure 11: Pseudo-Depth estimated from various degraded images by [3]. Numbers below each map
denote the Pearson correlation coefficient concerning the GT-based pseudo-depth. The consistently
high values (close to 1.0) validate its effectiveness as a reliable depth in different environments.

B.2 Dataset Analysis90

To evaluate the impact of image degradation caused by scattering media on the structure-from-motion91

(SfM) [4] initialization process in COLMAP [4, 5], we analyze the density and completeness of the92

generated sparse point clouds under degraded imaging conditions. When image quality is compro-93

mised due to fog or water, COLMAP struggles with reliable feature extraction and matching, resulting94

in significantly sparser and less accurate point clouds. As visualized in Fig. 10, specific regions,95

particularly those with strong scattering effects, exhibit apparent gaps or absences in the geometry.96

This degradation-induced sparsity directly hinders the quality of subsequent reconstruction stages,97

especially for methods relying on accurate geometry priors, such as 3DGS. These findings highlight98

the sensitivity of COLMAP-based initialization pipelines to visibility degradation, underscoring the99

need for complementary initialization strategies to recover missing geometry in severely degraded100

scenes.101

C More Analysis and Discussion102

In this section, we provide a comprehensive analysis of our method under various settings. We103

first verify the robustness of our pseudo-depth under diverse degradation types (i.e., Sec. C.1) and104

examine how critical hyperparameters affect performance(i.e., Sec. C.2). We then assess the impact105

of COLMAP initialization (i.e., Sec. C.3) and our depth ranking regularized loss (i.e., Sec. C.4),106

demonstrating their importance for stable geometry learning. Furthermore, we analyze statistical107

variance across different runs and degradation levels to establish result consistency (i.e., Sec. C.5).108

Finally, we analyze the limitations of our method with respect to the LPIPS metric (i.e., Sec. C.6).109

C.1 Robustness of Pseudo-Depth110

Our pipeline leverages the Depth Anything Model [2, 3], a state-of-the-art monocular depth estimator,111

to compute robust pseudo-depth maps from media-degraded images. These maps serve as essential112
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Figure 12: Effect of varying the maximum SH
degree used for the plenoptic medium represen-
tation.
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Figure 13: Effect of varying the number N of
patches used in the depth ranking regularized
loss.

Table 8: Effect of the COLMAP initialization.
We compare it with a random initialization with
50,000 points.

Initialzation PSNR SSIM LPIPS FPS Time

Random 25.198 0.7983 0.2235 116 6.4min
COLMAP 30.388 0.9207 0.1274 237 7.0min
COLMAP & PDGC 30.472 0.9225 0.1276 249 7.0min

Table 9: Effect of the depth ranking regularized
loss. We compare it with the Pearson correlation
loss from [6].

Loss PSNR SSIM LPIPS FPS Time

w/o Ldepth 30.305 0.9212 0.1272 252 7.0min
w/ L′

depth [6] 30.384 0.9209 0.1292 246 7.7min
w/ Ldepth 30.472 0.9225 0.1276 249 7.0min

guidance for both our Pseudo-Depth Gaussian Complementation (PDCG) and the depth ranking113

regularized loss. As shown in Fig. 11, a key advantage of this approach is its robustness to medium-114

induced degradations. Despite varying levels of scattering and absorption in both water and fog,115

the pseudo-depth maps remain visually consistent across different input conditions and align well116

with those derived from clean ground-truth images. To quantitatively support this observation, we117

report the Pearson [6] correlation coefficient below each depth map, comparing each pseudo-depth to118

the one predicted from the clean (GT) image. The consistently high correlation values (e.g., >0.99)119

validate the robustness and medium-agnostic nature of the predictions by [3], making it well-suited120

for initialization and supervision in degraded scenes.121

C.2 Effect of Hyperparameters122

In our experiments, we investigate two critical hyperparameters that affect the performance of our123

plenoptic medium representation and the efficacy of the depth ranking regularized loss.124

First, in Fig. 12, we control the maximum spherical harmonics (SH) degree for our plenoptic125

representation in our method. Adjusting this parameter determines the level of angular complexity126

captured in the medium field, thereby influencing the fidelity of volumetric effects such as scattering127

and color absorption. A higher maximum SH degree can model more detailed angular variations.128

Still, it may also increase computational cost and risk of overfitting, whereas a lower degree results in129

a smoother but potentially oversimplified medium representation. To achieve an optimal trade-off130

between computational efficiency and representational fidelity, we fix the SH degree to 3.131

Second, we vary the number N of downsampled patches used in the depth ranking regularized loss132

for our method in Fig. 13. This loss plays a crucial role in enforcing depth consistency during training.133

A larger N provides finer granularity for capturing local depth variations, but it also introduces more134

noise and increases computational overhead, even out-of-memory issues during training. In contrast,135

a smaller N simplifies the loss calculation but may not capture sufficient spatial detail. Empirically,136

setting N = 16 yields the best performance while maintaining a reasonable computational load.137

C.3 Effect of the COLMAP Initialization138

To evaluate the role of COLMAP-based initialization within our framework, we compare three139

variants: (1) our method with COLMAP initialization but without PDGC, (2) our method with140

random initialization using 50,000 uniformly sampled 3D points, and (3) our full pipeline combining141
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Figure 14: Mean and variance of reconstruction
quality over four runs on real-world scenes.
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Figure 15: Performance variation on simulated
data across different degradation levels.

SeaThru-NeRF’s LPIPS Our LPIPS GT Noise in Background

Figure 16: Visual comparison of LPIPS maps between SeaThru-NeRF and our Plenodium. The
primary difference appears in background regions corrupted by GT noise.

COLMAP with PDGC. COLMAP provides a strong geometric prior that aids reconstruction; however,142

under severe degradation (e.g., fog or water), its output often becomes sparse and contains missing143

regions. In contrast, random initialization does not rely on scene-specific priors but ensures uniform144

spatial coverage, even in areas where COLMAP fails to generate points. As shown in Tab. 8,145

despite the degraded visibility, COLMAP initialization still leads to better performance than random146

initialization, validating the utility of its geometric prior. Moreover, our full method—augmenting147

COLMAP with PDGC—further improves results, indicating that while COLMAP provides a solid148

foundation, suggesting that complementary strategies can effectively enhance geometric priors under149

a degraded environment.150

C.4 Effect of the Depth Ranking Regularized Loss151

To further evaluate the effectiveness of our proposed depth ranking regularized loss Ldepth, we compare152

our method (i.e., w/ Ldetph) against two baselines: one trained without any depth supervision (i.e.,153

w/o Ldepth), and another using the Pearson correlation-based depth loss L′
depth adopted in FSGS [6]154

(i.e., w/ L′
depth). As shown in Tab. 9, while L′

depth provides marginal improvements over the no-depth155

baseline, our method that leverages Ldepth achieves superior performance, which shows that our depth156

ranking regularized loss offers more effective geometric supervision with imprecise pseudo-depth157

supervision.158

C.5 Statistical Analysis159

To ensure the robustness and stability of our quantitative results, we conduct four independent training160

runs on real-world scenes and report the average performance in Tab. 1 of the main manuscript. As161

shown in Fig. 14, we visualize the mean performance across runs and the corresponding variance to162

reflect consistency.163

For our simulated dataset, we compare the average PSNR across scenes under water and fog degra-164

dation. As shown in Fig. 15, our method (Plenodium) consistently outperforms WaterSplatting165

across all conditions. The error bars represent the standard deviation across different degradation166
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Figure 17: Visual comparison on our simulated dataset.

levels, reflecting both the effectiveness and robustness of each method under challenging visual167

environments.168
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C.6 Limitation169

While our method underperforms SeaThru-NeRF in terms of LPIPS in some scenes (as reported in170

Tab. 1 of the main manuscript), we conduct a visual analysis to better understand this discrepancy.171

As shown in Fig. 16, the LPIPS maps indicate that the main difference arises in the medium regions,172

where our method yields higher LPIPS values. We further observe that background areas in the173

GT contain visible noise, which may act as a confounding factor in LPIPS evaluation, limiting its174

reliability in degraded scenes.175

D More Visualizations176

In this section, we present additional visualizations on our simulated dataset, comparing SeaThru-177

NeRF [7], WaterSplatting [8], and our proposed Plenodium, as shown in Fig. 17. We also include178

video results in the supplementary material, rendered at 24 FPS using camera trajectories interpolated179

from the evaluation poses with a step size of 10.180

E Broader Impact181

Our method offers a more accurate and efficient solution for underwater 3D reconstruction, which can182

positively impact fields such as marine ecology, environmental monitoring, underwater archaeology,183

and infrastructure inspection. By improving scene recovery in visually degraded environments, our184

approach may assist in documenting underwater habitats, tracking pollution effects, and preserving185

submerged cultural heritage. Furthermore, the proposed simulated dataset provides a benchmark for186

evaluating underwater image restoration methods, promoting reproducibility and transparency. How-187

ever, as with any enhanced visual sensing technology, there exists potential for misuse in surveillance188

or unauthorized mapping. We encourage responsible use and recommend that applications of this189

technology follow appropriate ethical and legal guidelines.190
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